

CLR-CPRI-S1020A/CLR-CPRI-S1020B 10G CPRI SFP+ BiDi 20km Industrial Optical Transceivers

Features

- Operating data rate up to 10.3Gb/s data rates
- ♦ Simplex LC Connector Bi-Directional SFP+ Optical Transceiver
- ♦ Single 3.3V Supply
- ♦ Up to 20km on 9/125um SMF
- ♦ A:1270nm DFB Laser transmitter,1330nm PIN receiver
- ♦ B:1330nm DFB Laser transmitter,1270nm PIN receiver
- ◆ Compliant with IEEE 802.3ae 10GBASE-L2R and 10GBASE-L2W
- ♦ SFP+ MSA SFF-8431 Compliant
- Digital Diagnostic SFF-8472 Compliant
- ♦ RoHS compliant and Lead Free
- Operating case temperature:

Industrial: -40 ~85 °C

Applications

- ♦ 10GBASE-L2R at 10.3125Gbps
- ♦ 10GBASE-L2W at 9.953Gbps
- ♦ Fiber Channel
- 6.1440Gbps/9.8304Gbps/10.1376Gbps CPRI data rate
- ♦ Other Optical Links

Description

The CLR-CPRI-S1010A and CLR-CPRI-S1010B series single mode transceiver is small form factor pluggable module for Bi-directional optical data communications, such as 10GBASE-L2R/L2W defined by IEEE 802.3ae, OBSAI and CPRI optical links. It is with the SFP+ 20-pin connector to allow hot plug capability.

The transceiver is designed to transmit/receive data rates from 8.5Gbps to 10.3Gbps. The transceiver consists of three sections: a BOSA, including a DFB laser transmitter and a PIN photodiode integrated with a trans-impedance preamplifier (TIA); Transceiver IC, consisting of LD Driver and Post-Amplifier; and MCU control unit. All modules satisfy class I laser safety requirements.

The transceivers are compatible with SFP+ Multi-Source Agreement (MSA) and SFF-8472. For further information, please refer to SFP+ MSA.

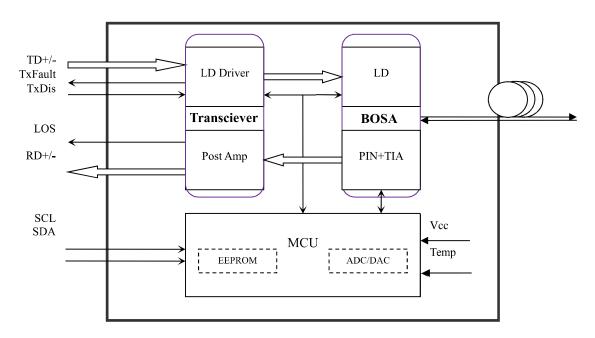


Figure 1. Principle diagram of SFP+ Module

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	4.5	V
Storage Temperature	Ts	-40	+85	°C
Operating Humidity	-	5	85	%

Recommended Operating Conditions

Parameter		Symbol	Min	Typical	Max	Unit
Power Supply Voltage		Vcc	3.13	3.3	3.47	V
Power Supply Current		Icc			320	mA
Operating Case	Standard	Тс	0		+70	°C
Temperature	Industrial	10	- 40		+85	°C
Data Rate					10.3	Gbps

Notes:

^[1] Supply current is shared between VCCTX and VCCRX.

^[2] In-rush is defined as current level above steady state current requirements.

Electrical Characteristics ($T_{OP}=25^{\circ}C$, $V_{CC}=3.3$ Volts)

	Parameter	Symbol	Min	Typical	Max	Unit	Notes
Supply Volta	age	V_{CC}	3.00	3.30	3.60	V	1
Supply Curre	ent	I_{CC}		200	320	mA	1
Transmitter							
Input Differe	ential Impedance	R _{in}	90	100	110	Ω	3
Single-ended	l Data Input Swing	V _{in,pp}	150		1200	mV_{pp}	2
Transmit Dis	sable Voltage	V_{D}	2		V _{CC} +0.3	V	
Transmit En	able Voltage	V_{EN}	V_{ee}		V _{ee} +0.8	V	
TX Fault	Fault	V _{Fault}	2.0		Vcc	V	
171 Tudit	Normal	V _{Normal,Fault}	Vee		Vee+0.4	V	
			Receiver				
Output Diffe	rential Impedance	Rout	90	100	110	Ω	3
Single-ended Data Output Swing		V _{out,pp}	300		700	mV_{pp}	2
LOS Fault		V _{LOS} ,fault	2		V _{CC}	V	4
LOS Normal		V _{LOS} ,norm	V_{ee}		$V_{ee}+0.8$	V	4

Notes:

Optical Characteristics (TOP=25 $^{\circ}$ C, VCC=3.3 Volts)

CLR-CPRI-S1020A

Parameter	Symbol	Min	Typical	Max	Unit	Notes		
Transmitter								
Centre Wavelength	λο	1260	1270	1280	nm			
Side Mode Suppression Ratio	SMSR	30			dB			
Spectral Width (-20dB)	σ			1	nm			
Average Output Power	Pout	-3	0	3	dBm	10km		
Extinction Ratio	ER	3.5			dB			
Transmitter and Dispersion Penalty	TDP			2	dB			
Average Power of OFF Transmitter	P _{Disable}			-30	dBm			
Relative Intensity Noise	RIN			-128	dB/Hz			

^{1.} Module power consumption never exceeds 1.1W.

^{2.} AC coupled.

^{3.100}ohmdifferential termination.

^{4.} LOS is LVTTL. Logic 0 indicates normal operation; logic1 indicates no signal detected.

		Receiver			
Centre Wavelength	λc	1320	1340	nm	
Average Receiver Power	Psensitivity		-14.5	dBm	1,2
Receiver Overload	P_{MAX}		+0.5	dBm	
LOS De-Assert	LOS_D		-18	dBm	
LOS Assert	LOSA	-28		dBm	
LOS Hysteresis		0.5		dB	

Notes:

- 1. Average Receiver Power (Min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant.
- 2. Measured with a PRBS231-1 test pattern @10.3125Gbps, BER \leq 10-12.
- 3. Rise and fall times, 20% to 80%, are measured following a fourth-order Bessel-Thompson filter with a bandwidth of 0.75 x clock frequency corresponding to the serial data rate.

CLR-CPRI-S1010B

Parameter	Symbol	Min	Typical	Max	Unit	Notes		
Transmitter								
Centre Wavelength	λο	1320	1330	1340	nm			
Side Mode Suppression Ratio	SMSR	30			dB			
Spectral Width (-20dB)	σ			1	nm			
Average Output Power	Pout	-3	0	3	dBm	1,2		
Extinction Ratio	ER	3.5			dB			
Transmitter and Dispersion Penalty	TDP			2	dB			
Average Power of OFF Transmitter	P _{Disable}			-30	dBm			
Relative Intensity Noise	RIN			-128	dB/Hz			
		Receiver						
Centre Wavelength	λο	1260		1280	nm			
Average Receiver Power	Psensitivity			-14.5	dBm	2,3		
Receiver Overload	P _{MAX}			+0.5	dBm			
LOS De-Assert	LOS_D			-18	dBm			
LOS Assert	LOS_A	- 28			dBm			
LOS Hysteresis		0.5			dB			

Notes:

- 1. Output is coupled into a 9/125um SMF.
- 2. Average Receiver Power (Min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant.
- 3. Measured with a PRBS2³¹⁻1 test pattern @10.3125Gbps, BER \leq 10⁻¹².
- 4. Rise and fall times, 20% to 80%, are measured following a fourth-order Bessel-Thompson filter with a bandwidth of 0.75 x clock frequency corresponding to the serial data rate.

Timing and Electrical

Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off			10	μs
Time To Initialize, including Reset of Tx Fault	t_init			300	ms
Tx Fault Assert Time	t_fault			100	μs
Tx Disable To Reset	t_reset	10			μs
LOS Assert Time	t_loss_on			100	μs
LOS De-assert Time	t_loss_off			100	μs
Serial ID Clock Rate	f_serial_clock			400	KHz
MOD_DEF (0:2)-High	V_{H}	2		Vcc	V
MOD_DEF (0:2)-Low	V_{L}			0.8	V

Diagnostics Specification

Parameter	Range	Unit	Accuracy	Calibration	
Tomas onetime	0 to +70	$^{\circ}\mathrm{C}$	±3°C	Internal / External	
Temperature	-40 to +85		±3°C		
Voltage	3.0 to 3.6	V	±3%	Internal / External	
Bias Current	0 to 100	mA	±10%	Internal / External	
TX Power	-3 to 3	dBm	±3dB	Internal / External	
RX Power	-15 to -3	dBm	±3dB	Internal / External	

Pin Definitions

Pin Diagram

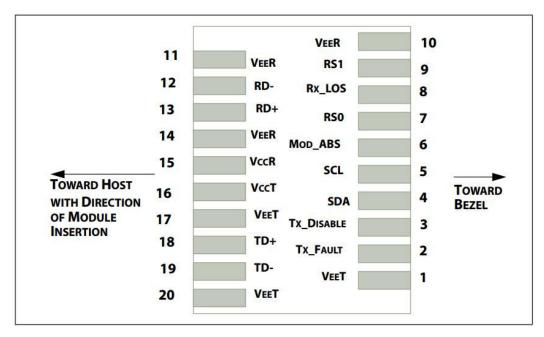


Figure 2. Host PCB SFP+ pad assignment top view

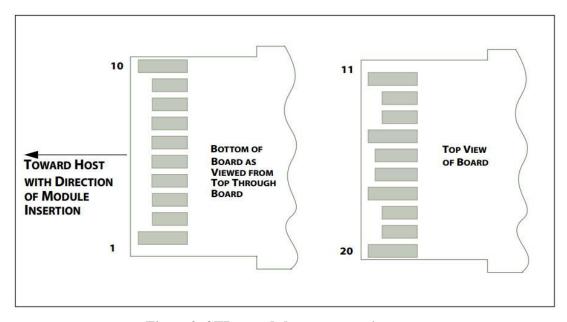


Figure 3. SFP+ module contact assignment

Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	VEET	Transmitter Ground	1	Note 1
2	TX_FAULT	Transmitter Fault Indication	3	Note 2
3	TX_DISABLE	Transmitter Disable, Laser output disabled on high or open	3	Note 3
4	SDA	2-wire Serial Interface Data Line, SDA Serial Data Signal	3	Note 2
5	SCL	2-wire Serial Interface Data Line, SCL Serial Clock Signal	3	Note 2
6	MOD_ABS	Module Absent. Grounded within the module	3	Note 4
7	RS0	RS0 for Rate Select: Open or Low = Module supports≤4.25Gbps High = Module supports 9.95 Gb/s to 10.3125 Gb/s	3	Note 5
8	RX_LOS	Loss of Signal indication. Logic 0 indicates normal operation	3	Note 2
9	RS1	No connection required	1	Note 5
10	VEER	Receiver ground	1	Note 1
11	VEER	Receiver ground	1	Note 1
12	RD-	Receiver Inverted Data out. AC Coupled	3	Note 6
13	RD+	Receiver Data out. AC Coupled	3	Note 6
14	VEER	Receiver ground	1	Note 1
15	VCCR	Receiver Power Supply	2	
16	VCCT	Transmitter Power Supply	2	
17	VEET	Transmitter Ground	1	Note 1
18	TD+	Transmit Data In.AC Coupled	3	Note 7
19	TD-	Transmit Inverted Data In. AC Coupled	3	Note 7
20	VEET	Transmitter Ground	1	Note 1

Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

- 1) Module circuit ground is isolated from module chassis ground within the module.
- 2)TX Fault/RX_LOS is an open collector output, which should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind or loss of signal. In the low state, the output will be pulled to less than 0.8V.SDA/SCL should be pulled up with 4.7k-10k ohms on host board to a voltage between 3.15Vand 3.6V.
- 3) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\sim10k\Omega$ resistor. Its states are:

- 4) Mod_ABS is connected to VeeT or VeeR in the SFP+ module. The host may pull this contact up to Vcc_Host with a resistor in the range 4.7 k Ω to 10 k Ω . Mod_ABS is asserted "High" when the SFP+ module is physically absent from a host slot.
- 5) RS0 and RS1 are module inputs and are pulled low to VeeT with > 30 k Ω resistors in the module.
- 6) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential).
- 7) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

Recommend Circuits

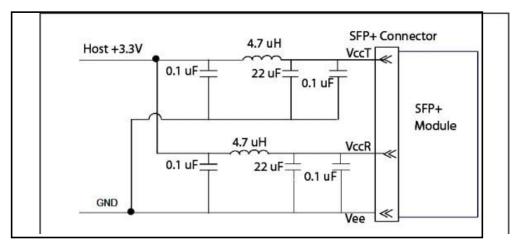
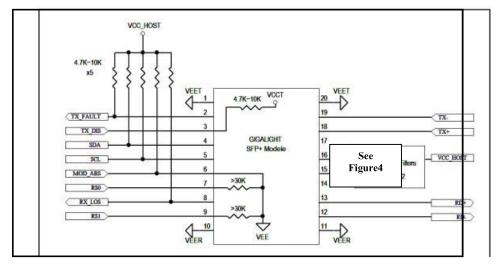



Figure 4. Host Board Power Supply Filters Circuit

Figure5.Host-Module Interface

Mechanical Dimensions

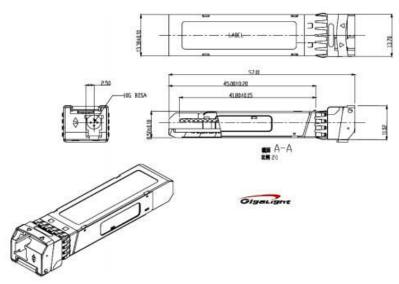


Figure 5. Key Mechanical Dimensions